TEMP-PLATE® ENERGY BANKS ENERGY SAVERS FOR PULP AND PAPER MILLS

The Mueller® Temp-Plate® Advantage for Pulp, Paper, and Lumber Mills

TEMP-PLATE

ENERGY BANK

Rising energy costs have led the pulp and paper industry to reexamine their processes to locate cost-effective methods of cutting energy consumption. Fuel costs represent a high percentage of total production costs in the pulp and paper industry.

A recent report on heat exchangers lists pulp and paper mills as one of the five largest industrial consumers of energy. The same report also indicates that this industry has been slow to install heat exchangers due to the presence of cellulose and resin in the wastestream and air-stream mixtures. Even small amounts of cellulose and resin will clog and foul most traditional heat exchangers. However, due to the large passageways inherent in the Temp-Plate bank design, these problems are diminished.

Mueller Temp-Plate energy banks are designed to provide significant savings by recovering energy from the exhaust stream of a paper machine. These energy banks offer a number of distinct advantages for the user.

- ♦ High heat transfer rates maximize the amount of heat recovered.
- Cost-effective heat transfer equipment with minimal payback time.
- Reduces energy consumption without the maintenance expense associated with other high fouling designs.

Easy Maintenance

- Stays clean longer, less cleaning even in the presence of cellulose and resins.
- ◆ Low fouling potential due to Temp-Plate's low-profile cross section.
- Open passageways allow easy mechanical brushing or spray cleaning.

Ease of Installation

- ◆ Temp-Plate energy banks can be used in a variety of energy recovery projects involving available atmospheric steam or air/water vapor mixtures in pulp and paper mills.
- Available in any configuration or size, they are ideal for large surface area applications.
- ◆ Narrow profile results in space efficiency in addition to high heat transfer coefficients. You get more square feet of heat transfer surface in the allowable space than other types of heat exchangers.

Versatile Temp-Plate Energy Recovery Banks Are Used In:

- Paper drying process.
- ◆ Thermal mechanical pulping (TMP) units.
- ♦ Flow digesters.
- Drain areas.

Energy \$avings Formula

(Cost of Mueller Energy Bank) + (Cost to Install)

Total Installed Cost

S Saved Per Heating Season

(Savings per month**) x Heating Season in Months

TYPICAL APPLICATION

A typical installation features Temp-Plate energy banks on the mezzanine of a paper mill. In this example, the Temp-Plate energy bank uses hot paper machine exhaust to heat 575 gpm water from 80°F to 120°F to produce a recycling of 10 million BTUs for each hour of operation.

Using the formula above, and the following assumptions:

SAVINGS PER MONTH										
	Cost per 1,000,000 Btu or 1,000 lbs. of Steam									
Heat Recovery x 1,000,000 Btu/hr	Btu	\$3.00	\$5.00	\$7.00	\$9.00					
	2	\$ 4,380	\$ 7,300	\$10,200	\$13,400					
	4	8,760	14,600	20,440	26,280					
	6	13,140	21,900	30,660	39,420					
	8	17,520	29,200	40,880	52,560					
	10	21,900	36,500	51,100	65,700					
	12	26,280	43,800	61,320	78,840					

*Retrofits are even lower cost.

**See chart above for monthly savings.

- ♦ Steam Cost: \$5/1,000,000 btuh (See chart above.)
- ◆ Cost of Temp-Plate Energy Bank: \$85,000*
- ◆ Cost of Installation: \$85,000
- ♦ Six-Month Heating Season

The results are as follows:

$$\frac{(\$85,000) + (\$85,000)}{(36,500) \times (6 \text{ Months})} = \frac{\$170,000}{\$219,000} = .77 \text{ or a } 4\frac{1}{2} \text{ Month Payback (Estimate) Plus a } \$49,000 \text{ Savings the First Year}$$

Now try your numbers:

$$\frac{(\$) + (\$)}{(\$) + (\$)} = \frac{\$}{\$} = \text{Fraction of Heating Season to Reach Break Even}$$

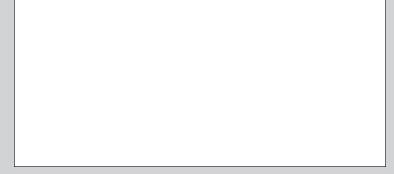
When looking at the cost savings conservatively over a 10-year life span, we see the results below:

CUMULATIVE SAVINGS									
Year	Annual Savings	Cumulative Savings	Year	Annual Savings	Cumulative Savings				
1	\$49,000	\$ 49,000	6	\$219,000	\$1,144,000				
2	219,000	268,000	7	219,000	1,363,000				
3	219,000	487,000	8	219,000	1,582,000				
4	219,000	706,000	9	219,000	1,801,000				
5	219,000	925,000	10	219,000	2,020,000				

Let Paul Mueller Company's heat transfer specialists determine the savings for your application by calling 1-800-MUELLER, ext. 9515!

Temp-Plate® Energy Bank Specifications EXHAUST SIDE Design Pressure (inches of water): Pressure Drop (inches of water): Flow Rate (ACFM, SCFM, or lbs. of dry air per minute): Dry Bulb Temperature (°F): Wet Bulb Temperature (°F or lbs. of water/lb. of dry air): LIQUID SIDE Design Pressure (psig): Pressure Drop (psi): Flow Rate (gpm): Inlet Temperature (°F): Outlet Temperature (°F): SIZE RESTRICTIONS Height: 551 **Typical** Recycle to Processing Temp-Plate **Application** Space Heating Recovery 40.000 ACFM Feed Water 120°F Water 140°F WB, 160°F DB Heating Potable Water Paper Machine

All products, specifications, and features of this brochure are representative of the final product and are intended as reference only. We reserve the right to make alterations without notice.



P.O. Box 828 • Springfield, Missouri, 65801-0828, U.S.A.
Phone: (417) 831-3000 • 1-800-MUELLER • Fax: (417) 575-9885
www.muel.com • E-mail: heattrans@muel.com

International Inquiries: Fax: (417) 831-6906 E-mail: international@muel.com

©1995-2005 Paul Mueller Company

